77 research outputs found

    Perturbation theory for a stochastic process with Ornstein-Uhlenbeck noise

    Full text link
    The Ornstein-Uhlenbeck process may be used to generate a noise signal with a finite correlation time. If a one-dimensional stochastic process is driven by such a noise source, it may be analysed by solving a Fokker-Planck equation in two dimensions. In the case of motion in the vicinity of an attractive fixed point, it is shown how the solution of this equation can be developed as a power series. The coefficients are determined exactly by using algebraic properties of a system of annihilation and creation operators.Comment: 7 pages, 0 figure

    Stationary and Transient Work-Fluctuation Theorems for a Dragged Brownian Particle

    Full text link
    Recently Wang et al. carried out a laboratory experiment, where a Brownian particle was dragged through a fluid by a harmonic force with constant velocity of its center. This experiment confirmed a theoretically predicted work related integrated (I) Transient Fluctuation Theorem (ITFT), which gives an expression for the ratio for the probability to find positive or negative values for the fluctuations of the total work done on the system in a given time in a transient state. The corresponding integrated stationary state fluctuation theorem (ISSFT) was not observed. Using an overdamped Langevin equation and an arbitrary motion for the center of the harmonic force, all quantities of interest for these theorems and the corresponding non-integrated ones (TFT and SSFT, resp.) are theoretically explicitly obtained in this paper. While the (I)TFT is satisfied for all times, the (I)SSFT only holds asymptotically in time. Suggestions for further experiments with arbitrary velocity of the harmonic force and in which also the ISSFT could be observed, are given. In addition, a non-trivial long-time relation between the ITFT and the ISSFT was discovered, which could be observed experimentally, especially in the case of a resonant circular motion of the center of the harmonic force.Comment: 20 pages, 3 figure

    Phenomenological approach to non-linear Langevin equations

    Full text link
    In this paper we address the problem of consistently construct Langevin equations to describe fluctuations in non-linear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property together with the macroscopic knowledge of the system is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time-reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models.Comment: LaTex file, 2 figures available upon request, to appear in Phys.Rev.

    The bremsstrahlung equation for the spin motion in LHC

    Full text link
    The influence of the bremsstrahlung on the spin motion is expressed by the equation which is the analogue and generalization of the Bargmann-Michel-Telegdi equation. The new constant is involved in this equation. This constant can be immediately determined by the experimental measurement of the spin motion, or it follows from the classical limit of quantum electrodynamics with radiative corrections.Comment: 9 page

    On the theory of cosmic-ray showers I the furry model and the fluctuation problem

    Full text link
    The main problems regarding the shower formation by fast electrons are reviewed on the basis of a simplified model first proposed by Furry ( S S 1 and 2). A general method is developed for calculating the fluctuation in the number of particles after a thickness x of matter ( S 3). It is shown in S 4 that can always be found when the average energy distribution F(E, x) is known. Using the approximate "cut-off" method the numerical values of have been computed for the Furry model (see table on p. 358). The approach to the normal value of the fluctuation (corresponding to the Poisson distribution) is much slower than has been expected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32597/1/0000737.pd

    Diffusion over a saddle with a Langevin equation

    Get PDF
    The diffusion problem over a saddle is studied using a multi-dimensional Langevin equation. An analytical solution is derived for a quadratic potential and the probability to pass over the barrier deduced. A very simple solution is given for the one dimension problem and a general scheme is shown for higher dimensions.Comment: 13 pages, use revTeX, to appear in Phys. Rev. E6

    Multispecies virial expansions

    Get PDF
    We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs

    Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media

    Full text link
    This study concerns a situation when measurements of the nonresonant cross-section of nuclear reactions appear highly dependent on the environment in which the particles interact. An appealing example discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta. In these experiments, the reaction cross section for d(d,p)t was shown to be orders of magnitude greater than what the conventional model predicts for the low-energy particles. In this paper we take into account the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal medium elastically interacting with the medium particles. In order to calculate the nuclear reaction rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical calculation of the Feynman diagram using nonrelativistic kinetic Green's functions in the medium which correspond to the generalized energy and momentum distribution functions of interacting particles. We show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This can significantly speed up the computation and control accuracy. Our calculations show that quantum effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars. The possibility to observe the theoretical predictions under laboratory conditions is discussed

    Diffusive spin transport

    Full text link
    Information to be stored and transported requires physical carriers. The quantum bit of information (qubit) can for instance be realised as the spin 1/2 degree of freedom of a massive particle like an electron or as the spin 1 polarisation of a massless photon. In this lecture, I first use irreducible representations of the rotation group to characterise the spin dynamics in a least redundant manner. Specifically, I describe the decoherence dynamics of an arbitrary spin S coupled to a randomly fluctuating magnetic field in the Liouville space formalism. Secondly, I discuss the diffusive dynamics of the particle's position in space due to the presence of randomly placed impurities. Combining these two dynamics yields a coherent, unified picture of diffusive spin transport, as applicable to mesoscopic electronic devices or photons propagating in cold atomic clouds.Comment: Lecture notes, published in A. Buchleitner, C. Viviescas, and M. Tiersch (Eds.), "Entanglement and Decoherence. Foundations and Modern Trends", Lecture Notes in Physics 768, Springer, Berlin (2009

    Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces

    Get PDF
    Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected components of the moduli space of representations with maximal Toledo invariant.Comment: v2: added due credits to the work of Burger, Iozzi and Wienhard. v3: corrected count of connected components for G=SU(p,q) (p \neq q); added due credits to the work of Xia and Markman-Xia; minor corrections and clarifications. 31 page
    • …
    corecore